Accelerated Block Coordinate Proximal Gradients with Applications in High Dimensional Statistics
نویسندگان
چکیده
Nonconvex optimization problems arise in different research fields and arouse lots of attention in signal processing, statistics and machine learning. In this work, we explore the accelerated proximal gradient method and some of its variants which have been shown to converge under nonconvex context recently. We show that a novel variant proposed here, which exploits adaptive momentum and block coordinate update with specific update rules, further improves the performance of a broad class of nonconvex problems. In applications to sparse linear regression with regularizations like Lasso, grouped Lasso, capped `1 and SCAP, the proposed scheme enjoys provable local linear convergence, with experimental justification.
منابع مشابه
An Accelerated Randomized Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization
We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...
متن کاملAn Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization
We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...
متن کاملRandomized Similar Triangles Method: A Unifying Framework for Accelerated Randomized Optimization Methods (Coordinate Descent, Directional Search, Derivative-Free Method)
In this paper, we consider smooth convex optimization problems with simple constraints and inexactness in the oracle information such as value, partial or directional derivatives of the objective function. We introduce a unifying framework, which allows to construct different types of accelerated randomized methods for such problems and to prove convergence rate theorems for them. We focus on a...
متن کاملA remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions
We analyze alternating descent algorithms for minimizing the sum of a quadratic function and block separable non-smooth functions. In case the quadratic interactions between the blocks are pairwise, we show that the schemes can be accelerated, leading to improved convergence rates with respect to related accelerated parallel proximal descent. As an application we obtain very fast algorithms for...
متن کاملAn Efficient Inexact ABCD Method for Least Squares Semidefinite Programming
We consider least squares semidefinite programming (LSSDP) where the primal matrix variable must satisfy given linear equality and inequality constraints, and must also lie in the intersection of the cone of symmetric positive semidefinite matrices and a simple polyhedral set. We propose an inexact accelerated block coordinate descent (ABCD) method for solving LSSDP via its dual, which can be r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.05338 شماره
صفحات -
تاریخ انتشار 2017